Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(15): 10495-10508, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38556991

ABSTRACT

Sonodynamic therapy (SDT) has promising application prospects in tumor therapy. However, SDT does not eradicate metastatic tumors. Herein, Cu-substituted ZnAl ternary layered double hydroxide nanosheets (ZCA NSs) were developed as both sonosensitizers and copper nanocarriers for synergistic SDT/cuproptosis cancer therapy. An optimized electronic structure more conducive to the sonodynamic process was obtained from ZCA NSs via the Jahn-Teller effect induced by the introduction of Cu2+, and the synthesized ZCA NSs regulated the intricate tumor microenvironment (TME) by depleting endogenous glutathione (GSH) to amplify oxidative stress for further enhanced SDT performance. Furthermore, cuproptosis was evoked by intracellular overload of Cu2+ and amplified by SDT, leading to irreversible proteotoxicity. In vitro results showed that such synergetic SDT/cuproptosis triggered immunogenic cell death (ICD) and promoted the maturation of dendritic cells (DCs). Furthermore, the as-synthesized ZCA NS-mediated SDT/cuproptosis thoroughly eradicated the in vivo solid tumors and simultaneously elicited antitumor immunity to suppress lung and liver metastasis. Overall, this work established a nanoplatform for synergistic SDT/cuproptosis with a satisfactory antitumor immunity.


Subject(s)
Liver Neoplasms , Neoplasms , Ultrasonic Therapy , Humans , Copper , Electronics , Glutathione , Hydroxides , Liver Neoplasms/drug therapy , Immunity , Cell Line, Tumor , Neoplasms/drug therapy , Tumor Microenvironment
2.
Adv Mater ; : e2314095, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38344832

ABSTRACT

Age-related macular degeneration (AMD) disease has become a worldwide senile disease, and frequent intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the mainstream treatment in the clinic, which is associated with sight-threatening complications. Herein, nintedanib, an inhibitor of angiogenesis, and lutein, a potent antioxidant, can co-assemble into nanoparticles through multiple noncovalent interactions. Interestingly, the co-assembled lutein/nintedanib nanoparticles (L/N NPs) exhibit significantly improved stability and achieve long-term sustained release of two drugs for at least two months in mice. Interestingly, in rabbit eyeball with a more complete barrier system, the L/N NPs still successfully distribute in the retina and choroid for a month. In the laser-induced mouse choroidal neovascularization model, the L/N NPs after a minimally invasive subconjunctival administration can successfully inhibit angiogenesis and achieve comparable and even better therapeutic results to that of standard intravitreal injection of anti-VEGF. Therefore, the subconjunctival injection of L/N NPs with long-term sustained drug release behavior represents a promising and innovative strategy for AMD treatment. Such minimally invasive administration together with the ability to effectively inhibit angiogenesis reduce inflammation and counteract oxidative stress and holds great potential for improving patient outcomes and quality of life in those suffering from this debilitating eye condition.

3.
ACS Nano ; 18(4): 3349-3361, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38230639

ABSTRACT

Cancer vaccines with the ability to elicit tumor-specific immune responses have attracted significant interest in cancer immunotherapy. A key challenge for effective cancer vaccines is the spatiotemporal codelivery of antigens and adjuvants. Herein, we synthesized a copolymer library containing nine poly(ethylene glycol) methyl ether methacrylate-co-butyl methacrylate-co-2-(azepan-1-yl)ethyl methacrylate (PEGMA-co-BMA-co-C7AMA) graft copolymers with designed proportions of different components to regulate their properties. Among these polymers, C-25, with a C7AMA:BMA ratio at 1.5:1 and PEG wt % of 25%, was screened as the most effective nanovaccine carrier with enhanced ability to induce mouse bone marrow-derived dendritic cell (BMDC) maturation. Additionally, RNA-sequencing (RNA-Seq) analysis revealed that C-25 could activate dendritic cells (DCs) through multisignaling pathways to trigger potent immune effects. Then, the screened C-25 was used to encapsulate the model peptide antigen, OVA257-280, to form nanovaccine C-25/OVA257-280. It was found that the C-25/OVA257-280 nanovaccine could effectively facilitate DC maturation and antigen cross-presentation without any other additional adjuvant and exhibited excellent prophylactic efficacy in the B16F10-OVA tumor model. Moreover, in combination with antiprogrammed cell death protein-ligand 1 (anti-PD-L1), the C-25/OVA257-280 nanovaccine could significantly delay the growth of pre-existing tumors. Therefore, this work developed a minimalist nanovaccine with a simple formulation and high efficiency in activating tumor-specific immune responses, showing great potential for further application in cancer immunotherapy.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Mice , Nanovaccines , Neoplasms/pathology , Antigens/chemistry , Polymers , Immunotherapy , Methacrylates , Dendritic Cells , Mice, Inbred C57BL , Nanoparticles/chemistry
4.
Adv Mater ; 35(45): e2306281, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722134

ABSTRACT

Clinical evidence indicates that tumor-colonizing bacteria can be closely related to the tumor development and therapeutic responses. Selectively eliminating bacteria within tumors may be an attractive approach to enhance cancer treatment without additional side effects. Herein, it is found that, owing to the high affinity between the membrane protein Fap-2 on Fusobacterium nucleatum and d-galactose-ß (1-3)-N-acetyl-d-galactosamine (Gal-GalNAc) overexpressed on colorectal tumor cells, F. nucleatum can colonize in colorectal tumors, as evidenced by both clinical samples and animal tumor models. Notably, F. nucleatum colonized in colorectal tumors can lead to an immunosuppressive tumor microenvironment, greatly reducing their responses to immune checkpoint blockade (ICB) therapy. Inspired by this finding, an F. nucleatum-mimetic nanomedicine is designed by fusing F. nucleatum cytoplasmic membrane (FM) with Colistin-loaded liposomes to achieve selective killing of tumor-colonizing F. nucleatum without affecting gut microbes. As a result, the therapeutic responses of F. nucleatum-colonized tumors to ICB therapies can be successfully restored, as demonstrated in an F. nucleatum-infected subcutaneous CT-26 tumor model, chemically induced spontaneous colorectal cancer models, and MC-38 tumor model. In summary, this work presents an F. nucleatum-mimicking nanomedicine that can selectively eliminate tumor-colonized bacteria, which is promising for enhancing the responses of cancer immunotherapy against F. nucleatum-colonized colorectal cancer.


Subject(s)
Colorectal Neoplasms , Fusobacterium nucleatum , Animals , Nanomedicine , Colorectal Neoplasms/drug therapy , Anti-Bacterial Agents , Immunotherapy , Tumor Microenvironment
5.
J Control Release ; 363: 43-56, 2023 11.
Article in English | MEDLINE | ID: mdl-37734673

ABSTRACT

The gut microbiota is closely associated with the progression of colorectal cancer (CRC) in which Fusobacterium nucleatum (F. nucleatum) was found to induce cancer resistance to chemotherapeutics. To relieve F. nucleatum-induced drug resistance, herein, we found that short-chain fatty acid butyrate can inhibit the growth, enrichment and adhesion of F. nucleatum in colorectal cancer tissues by downregulating the expression of adhesion-associated outer membrane proteins, including RadD, FomA, and FadA, to reduce the colonization and invasion of F. nucleatum and relieve the chemoresistance induced by F. nucleatum. Leveraging the killing effect of butyrate on F. nucleatum, sodium butyrate (NaBu) was encapsulated in liposomes or prepared as NaBu tablets with Eudragit S100 coating and administered by intravenous injection or oral administration, respectively. Interestingly, both intravenous administration of NaBu liposomes and oral delivery of NaBu tablets could effectively inhibit the proliferation of F. nucleatum and significantly improve the therapeutic efficacy of oxaliplatin in mice with subcutaneous colorectal tumors, orthotopic colorectal tumors and even spontaneously formed colorectal tumors. Thus, our work provides a simple but effective formulation of NaBu to relieve F. nucleatum-induced chemoresistance, exhibiting ideal clinical application prospects.


Subject(s)
Colorectal Neoplasms , Fusobacterium Infections , Animals , Mice , Fusobacterium nucleatum/metabolism , Butyrates , Drug Resistance, Neoplasm , Liposomes/metabolism , Fusobacterium Infections/complications , Fusobacterium Infections/metabolism , Fusobacterium Infections/microbiology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism
7.
Adv Mater ; 35(29): e2302220, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178454

ABSTRACT

Radiotherapy (RT) is an extensively used strategy for cancer treatment, but its therapeutic effect is usually limited by the abnormal tumor microenvironment (TME) and it lacks the ability to control tumor metastases. In this work, a nanoscale coordination polymer, Hf-nIm@PEG (HNP), is prepared by the coordination of hafnium ions (Hf4+ ) with 2-nitroimidazole (2-nIm), and then modified with lipid bilayers containing poly(ethylene glycol) (PEG). Under low-dose X-ray irradiation, on the one hand, Hf4+ with high computed tomography signal enhancement ability can deposit radiation energy to induce DNA damage, and on the other hand, NO can be persistently released from 2-nIm, which can not only directly react with the radical DNA to prevent the repair of damaged DNA but also relieves the hypoxic immunosuppressive TME to sensitize radiotherapy. Additionally, NO can also react with superoxide ions to generate reactive nitrogen species (RNS) to induce cell apoptosis. More interestingly, it is discovered that Hf4+ can effectively activate the cyclic-di-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote the immune responses induced by radiotherapy. Thus, this work presents a simple but multifunctional nanoscale coordination polymer to deposit radiation energy, trigger the release of NO, modulate the TME, activate the cGAS-STING pathway, and finally realize synergistic radio-immunotherapy.


Subject(s)
Neoplasms , Nitric Oxide , Humans , X-Rays , Hafnium , Nucleotidyltransferases , Immunotherapy , Tumor Microenvironment , Neoplasms/radiotherapy
8.
ACS Nano ; 17(5): 4373-4386, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36802527

ABSTRACT

Therapeutic proteins are playing increasingly important roles in treating numerous types of diseases. However, oral administration of proteins, especially large ones (e.g., antibodies), remains a great challenge due to their difficulties in penetrating intestinal barriers. Herein, fluorocarbon-modified chitosan (FCS) is developed for efficient oral delivery of different therapeutic proteins, in particular large ones such as immune checkpoint blockade antibodies. In our design, therapeutic proteins are mixed with FCS to form nanoparticles, lyophilized with appropriate excipients, and then filled into enteric capsules for oral administration. It has been found that FCS could promote transmucosal delivery of its cargo protein via inducing transitory rearrangement of tight junction associated proteins between intestinal epithelial cells and subsequently release free proteins into blood circulation. It is shown that at a 5-fold dose oral delivery of anti-programmed cell death protein-1 (αPD1) or its combination with anti-cytotoxic T-lymphocyte antigen 4 (αCTLA4) using this method could achieve comparable antitumor therapeutic responses to that achieved by intravenous injection of corresponding free antibodies in various types of tumor models and, more excitingly, result in significantly reduced immune-related adverse events. Our work successfully demonstrates the enhanced oral delivery of antibody drugs to achieve systemic therapeutic responses and may revolutionize the future clinical usage of protein therapeutics.


Subject(s)
Excipients , Nanoparticles , Antibodies , Polymers , Immunotherapy
9.
ACS Nano ; 17(5): 4748-4763, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36809912

ABSTRACT

Obesity usually induces systemic metabolic disturbances, including in the tumor microenvironment (TME). This is because adaptive metabolism related to obesity in the TME with a low level of prolyl hydroxylase-3 (PHD3) depletes the major fatty acid fuels of CD8+ T cells and leads to the poor infiltration and unsatisfactory function of CD8+ T cells. Herein, we discovered that obesity could aggravate the immunosuppressive TME and weaken CD8+ T cell-mediated tumor cell killing. We have thus developed gene therapy to relieve the obesity-related TME to promote cancer immunotherapy. An efficient gene carrier was prepared by modifying polyethylenimine with p-methylbenzenesulfonyl (abbreviated as PEI-Tos) together with hyaluronic acid (HA) shielding, achieving excellent gene transfection in tumors after intravenous administration. HA/PEI-Tos/pDNA (HPD) containing the plasmid encoding PHD3 (pPHD3) can effectively upregulate the expression of PHD3 in tumor tissues, revising the immunosuppressive TME and significantly increasing the infiltration of CD8+ T cells, thereby improving the responsiveness of immune checkpoint antibody-mediated immunotherapy. Efficient therapeutic efficacy was achieved using HPD together with αPD-1 in colorectal tumor and melanoma-bearing obese mice. This work provides an effective strategy to improve immunotherapy of tumors in obese mice, which may provide a useful reference for the immunotherapy of obesity-related cancer in the clinic.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Tumor Microenvironment , Mice, Obese , Immunotherapy , Neoplasms/therapy , Cell Line, Tumor
10.
ACS Nano ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595442

ABSTRACT

Oral administration of protein drugs has always been challenging owing to various intestinal barriers. Herein, we developed an efficient oral protein delivery strategy by using in situ polymerization of zwitterions to encapsulate proteins, which were then loaded into enteric coated capsules for oral feeding. After oral administration of such capsules, the enteric coating would be degraded once the capsule enters the intestine, releasing polyzwitterion/protein nanocomplexes. With the help of polyzwitterion modification, such nanocomplexes were able to pass through the mucus and cellular barriers, likely by the proton-assisted amino acid transporter 1 (PAT1) pathway. Such a polyzwitterion-based protein encapsulation strategy could allow for effective oral delivery of different proteins, including bovine serum albumin (BSA), insulin, and antibodies. Using this strategy, the oral bioavailabilities of insulin and immunoglobin G (IgG) were measured to be as high as 16.9% and 12.5%, respectively. Notably, oral feeding of polyzwitterion/insulin capsules could effectively lower the blood glucose level of diabetic animals (mice, rats, and pigs). Moreover, polyzwitterion/antiprogramed death-1 (αPD-1) capsules were able to induce efficient antitumor immune responses, showing significant tumor inhibition effects toward B16F10- and 4T1-tumor bearing mouse models after oral administration. No significant toxic effect was observed for such oral protein formulations in the treated animals. Our work presents a strategy for the efficient oral delivery of protein drugs, including those with large molecular weights (e.g., antibodies) that can hardly be orally delivered using existing technologies.

11.
Sci Adv ; 9(4): eabq3104, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36706184

ABSTRACT

Therapeutic antibodies are extensively used to treat fundus diseases by intravitreal injection, as eyedrop formulation has been rather challenging due to the presence of ocular barriers. Here, an innovative penetrating carrier was developed for antibody delivery in eyedrop formulations. We found that fluorocarbon-modified chitosan (FCS) would self-assemble with proteins to form nanocomplexes, which could effectively pass across the complicated ocular structure to reach the posterior eye segments in both mice and rabbits. In a choroidal melanoma-bearing mouse model, eyedrops containing FCS/anti-PDL1 could induce stronger antitumor immune responses than those triggered by intravenous injection of anti-PDL1. Moreover, in choroidal neovascularization-bearing mouse and rabbit models, FCS/anti-VEGFA eyedrops effectively inhibited vascular proliferation, achieving comparable therapeutic responses to those observed with intravitreal injection of anti-VEGFA. Our work presents an effective delivery carrier to treat fundus diseases using eyedrop of therapeutic proteins, which may enable at-home treatment of many eye diseases with great patient compliance.


Subject(s)
Choroidal Neovascularization , Rabbits , Animals , Mice , Ophthalmic Solutions , Fundus Oculi , Disease Models, Animal , Choroidal Neovascularization/drug therapy
12.
Theranostics ; 12(8): 3834-3846, 2022.
Article in English | MEDLINE | ID: mdl-35664066

ABSTRACT

Rationale: Oxidative stress, resulting from excessive reactive oxygen species (ROS), plays an important role in the initiation and progression of inflammatory bowel disease (IBD). Therefore, developing novel strategies to target the disease location and treat inflammation is urgently needed. Methods: Herein, we designed and developed a novel and effective antioxidant orally-administered nanoplatform based on simulated gastric fluid (SGF)-stabilized titanium carbide MXene nanosheets (Ti3C2 NSs) with excellent biosafety and multiple ROS-scavenging abilities for IBD therapy. Results: This broad-spectrum and efficient ROS scavenging performance was mainly relied on the strong reducibility of Ti-C bound. Intracellular ROS levels confirmed that Ti3C2 NSs could efficiently eliminate excess ROS against oxidative stress-induced cell damage. Following oral administration, negatively-charged Ti3C2 NSs specifically adsorbed onto the positively-charged inflamed colon tissue via electrostatic interaction, leading to efficient therapy of dextran sulfate sodium salt (DSS)-induced colitis. The therapeutic mechanism mainly attributed to decreased ROS levels and pro-inflammatory cytokine secretion, and increased M2-phenotype macrophage infiltration and anti-inflammatory cytokine secretion, efficiently inhibiting inflammation and alleviating colitis symptoms. Due to their excellent ROS-scavenging performance, Ti3C2-based woundplast also promoted skin wound healing and functional vessel formation. Conclusions: Our study introduces redox-mediated antioxidant MXene nanoplatform as a novel type of orally administered nanoagents for treating IBD and other inflammatory diseases of the digestive tract.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Cytokines/therapeutic use , Dextran Sulfate/adverse effects , Disease Models, Animal , Inflammation/drug therapy , Inflammatory Bowel Diseases/drug therapy , Reactive Oxygen Species/metabolism , Titanium
13.
Nat Commun ; 13(1): 3432, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701435

ABSTRACT

Reactive oxygen species (ROS) play vital roles in intestinal inflammation. Therefore, eliminating ROS in the inflammatory site by antioxidant enzymes such as catalase and superoxide dismutase may effectively curb inflammatory bowel disease (IBD). Here, Escherichia coli Nissle 1917 (ECN), a kind of oral probiotic, was genetically engineered to overexpress catalase and superoxide dismutase (ECN-pE) for the treatment of intestinal inflammation. To improve the bioavailability of ECN-pE in the gastrointestinal tract, chitosan and sodium alginate, effective biofilms, were used to coat ECN-pE via a layer-by-layer electrostatic self-assembly strategy. In a mouse IBD model induced by different chemical drugs, chitosan/sodium alginate coating ECN-pE (ECN-pE(C/A)2) effectively relieved inflammation and repaired epithelial barriers in the colon. Unexpectedly, such engineered EcN-pE(C/A)2 could also regulate the intestinal microbial communities and improve the abundance of Lachnospiraceae_NK4A136 and Odoribacter in the intestinal flora, which are important microbes to maintain intestinal homeostasis. Thus, this study lays a foundation for the development of living therapeutic proteins using probiotics to treat intestinal-related diseases.


Subject(s)
Chitosan , Escherichia coli Infections , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Probiotics , Alginates/chemistry , Animals , Catalase/metabolism , Chitosan/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Inflammation , Inflammatory Bowel Diseases/drug therapy , Mice , Probiotics/pharmacology , Probiotics/therapeutic use , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
14.
Small ; 18(29): e2202596, 2022 07.
Article in English | MEDLINE | ID: mdl-35733079

ABSTRACT

Islet transplantation is a promising strategy for type 1 diabetes mellitus (T1DM) treatment, whereas implanted-associated foreign body reaction (FBR) usually induces the necrosis of transplanted islets and leads to the failure of glycemic control. Benefiting from the excellent anti-biofouling property of zwitterionic materials and their successful application in macroscopic implanted devices, microcapsules with zwitterionic coatings may be promising candidates for islet encapsulation. Herein, a series of zwitterion-coated core-shell microcapsules is fabricated (including carboxybetaine methacrylate [CBMA]-coated gelatin methacrylate [GelMA] [CBMA-GelMA], sulfobetaine methacrylate [SBMA]-coated GelMA [SBMA-GelMA], and phosphorylcholine methacrylate [MPC]-coated GelMA [MPC-GelMA]) by one-step photopolymerization of inner GelMA and outer zwitterionic monomers via a handmade two-fluid microfluidic device and it is demonstrated that they can effectively prevent protein adsorption, cell adhesion, and inflammation in vitro. Interestingly, the zwitterionic microcapsules successfully resist FBR in C57BL/6 mice after intraperitoneal implantation for up to 4 months. After successfully encapsulating xenogeneic rat islets in the SBMA-GelMA microcapsules, sustained normoglycemia is further validated in streptozotocin (STZ)-induced mice for up to 3 months. The zwitterion-modified microcapsule using a microfluidic device may represent a platform for cell encapsulation treatment for T1DM and other hormone-deficient diseases.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Animals , Capsules , Diabetes Mellitus, Type 1/therapy , Foreign-Body Reaction , Methacrylates , Mice , Mice, Inbred C57BL , Microfluidics , Rats
15.
ACS Nano ; 16(7): 10979-10993, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35723442

ABSTRACT

Sonodynamic therapy (SDT) has garnered extensive attention as a noninvasive treatment for deep tumors. Furthermore, imiquimod (R837), an FDA-approved toll-like receptor 7 agonist, is commonly used in clinical settings as an immune adjuvant. We prepared an activatable sonodynamic sensitizer platform (MR) based on glutathione-sensitive disulfide bonds linking Leu-MB, the reduced form of methylene blue (MB), and R837 to achieve efficient combinatory SDT and immunotherapy for tumors without harming normal tissues. We also used the amphiphilic polymer C18PMH-PEG to create self-assembled MB-R837-PEG (MRP) nanoparticles for immunosonodynamic therapy (iSDT). iSDT is a cancer treatment that combines activatable SDT and immunotherapy. Our iSDT demonstrated an excellent sonodynamic effect only at the tumor site, demonstrating high specificity in killing tumor cells when compared to SDT reported in the literature. The iSDT improves its tumor-killing effect by inducing an immune response, which is accomplished by secreted immune adjuvants in the tumor site. MRP was selectively activated by glutathione in the tumor microenvironment to release MB and R837, exhibiting excellent antitumor sonodynamic and immune responses. In addition, when combined with an α-PD-L1 antibody for immune checkpoint blockade, this therapy effectively inhibited tumor metastasis. Furthermore, mice treated with iSDT and α-PD-L1 antibody did not develop tumors even after tumor reinoculation, indicating that long-term immune memory was achieved. The concept of sonodynamic sensitizer preparation as a next-generation iSDT based on a noninvasive synergistic therapeutic modality applicable in the near future is presented in this study.


Subject(s)
Imiquimod , Nanoparticles , Animals , Mice , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , B7-H1 Antigen , Cell Line, Tumor , Glutathione , Imiquimod/pharmacology , Immunotherapy , Nanoparticles/chemistry
16.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34292870

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2), presents an urgent health crisis. More recently, an increasing number of mutated strains of SARS-CoV-2 have been identified globally. Such mutations, especially those on the spike glycoprotein to render its higher binding affinity to human angiotensin-converting enzyme II (hACE2) receptors, not only resulted in higher transmission of SARS-CoV-2 but also raised serious concerns regarding the efficacies of vaccines against mutated viruses. Since ACE2 is the virus-binding protein on human cells regardless of viral mutations, we design hACE2-containing nanocatchers (NCs) as the competitor with host cells for virus binding to protect cells from SARS-CoV-2 infection. The hACE2-containing NCs, derived from the cellular membrane of genetically engineered cells stably expressing hACE2, exhibited excellent neutralization ability against pseudoviruses of both wild-type SARS-CoV-2 and the D614G variant. To prevent SARS-CoV-2 infections in the lung, the most vulnerable organ for COVID-19, we develop an inhalable formulation by mixing hACE2-containing NCs with mucoadhesive excipient hyaluronic acid, the latter of which could significantly prolong the retention of NCs in the lung after inhalation. Excitingly, inhalation of our formulation could lead to potent pseudovirus inhibition ability in hACE2-expressing mouse model, without imposing any appreciable side effects. Importantly, our inhalable hACE2-containing NCs in the lyophilized formulation would allow long-term storage, facilitating their future clinical use. Thus, this work may provide an alternative tactic to inhibit SARS-CoV-2 infections even with different mutations, exhibiting great potential for treatment of the ongoing COVID-19 epidemic.


Subject(s)
COVID-19/prevention & control , Nanostructures/administration & dosage , SARS-CoV-2/drug effects , Adhesives/administration & dosage , Adhesives/chemistry , Adhesives/pharmacokinetics , Administration, Inhalation , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cryoprotective Agents/chemistry , Drug Storage , Epithelial Cells/metabolism , Excipients/administration & dosage , Excipients/chemistry , Excipients/pharmacokinetics , HEK293 Cells , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacokinetics , Lung/drug effects , Lung/metabolism , Lung/virology , Mice , Mice, Transgenic , Nanostructures/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Attachment/drug effects
17.
Carbohydr Polym ; 257: 117636, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33541661

ABSTRACT

Development of multifunctional antibacterial agent with long-lasting antibacterial activity and biofilm ablation performance is significant for the effective treatment of bacterial infections. Here, by utilizing the electrostatic interaction between sulfonated chitosan (SCS) and Ag+ and chitosan (CS), and the sodium borohydride reduction method, a versatile antibacterial agent (AgNPs@CS/SCS) capable of generating silver nanoparticles (AgNPs) in-situ and long-acting slow-release Ag+ was developed. AgNPs@CS/SCS has a good physiological stability and can long-acting slow-release of Ag+ due to the pH-dependent Ag+ release behavior of AgNPs. Noteworthy, AgNPs@CS/SCS can exert both excellent short- and long-term antibacterial and biofilm ablation activity. Importantly, it also exhibits superior antibacterial activity in the treatment of implant infections, accompanied by good biocompatibility. Together, this study suggest that AgNPs@CS/CSC is indeed a versatile antibacterial agent, and is expected to provide an effective treatment modality for implant infections in the clinic settings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Chitosan/chemistry , Drug Delivery Systems , Metal Nanoparticles/chemistry , Nanogels/chemistry , Silver/chemistry , Biofilms/growth & development , Delayed-Action Preparations/chemistry , Escherichia coli/drug effects , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...